Symptoms Associated with Abnormal Serotonin Levels

From brainmatrix

Note of Relevance for Functional Medicine: The essential amino acid tryptophan that is found in several foods is the sole precursor to serotonin in the nervous system.[1] Tryptophan is found in:[1][2]

  • Meats
  • Dairy foods
  • Fruits
  • Seeds

The availability of tryptophan is increased with high-glycemic index and high-glycemic load foods and meals.[3]

Affective Disorders and Mood[edit]

(-) Depression. Serotonin has long been implicated in depression.[4][5][6][7][8] Research into the connection between serotonin and depression suggests that serotonin dysfunction may cause depression in certain circumstances and reduced serotonin activity may make it difficult to recover from depression. Serotonin is thought to contribute to negative thinking patterns. Serotonin forms the basis of several depression treatments, including with selective serotonin reuptake inhibitors (SSRI).[5][6][9]

(+/-) Anxiety/Panic. Serotonin activity is thought to play a role in panic disorder, and both too much and too little serotonin have been implicated in panic and different forms of anxiety.[10][11][12] The relationship between anxiety and serotonin may in part occur because of the role of serotonin in the stress response.[13]

(+/-) Mood. Higher levels of serotonin are associated with improved mood, whereas serotonin dysfunction has been linked to suicidal ideation.[5][9] Research on menopausal women has shown that changes in serotonin function are implicated in mood alterations in those undergoing estrogen treatment.[14]

Cognition[edit]

*Serotonin’s role in cognition may involve its interaction with dopamine.[15]

(+/-) Cognitive Performance. Reduced serotonin neurotransmission appears to have a negative impact on cognitive functions, and normalizing serotonin levels may be beneficial for restoring cognitive performance, particularly in the context of neuropsychiatric disorders.[16] However, there are also data that suggest that during the acute phase of SSRI treatment, cognitive dysfunction may occur.[17]

Serotonin has been implicated in the cognitive symptoms of Alzheimer’s disease (AD), but the specific role that serotonin stimulation could play in influencing these symptoms has not been sufficiently studied.[18]

(+/-) Learning. Research shows that administering certain serotonin agonists and certain serotonin antagonists can facilitate learning in contexts where cognitive demand is high.[1]

(-) Memory. Several studies suggest that low extracellular serotonin levels are associated with impairments in the consolidation of memories.[19]

Behavior[edit]

(+) Impulsivity. Serotonin may be associated with preference for immediate reward and increased impulsivity.[20][9]

(+/-) Eating Behavior. Serotonin is implicated in feelings of satiety, and serotonin dysfunction can therefore lead to increases or decreases in appetite that are associated with eating disorders or obesity.[9][13][21]

(-) Social Adaptation. Serotonin is heavily implicated in social and moral behavior.[22] The use of serotonin and norepinephrine reuptake inhibitors (SNRI) in patients with depression has been linked to improvements in social adaptation.[9]

(+/-) Aggression. Changes in serotonin are linked to aggression, though the specific mechanisms by which serotonin may contribute to aggressive behavior is not entirely understood.[12] However, serotonin dysfunction is implicated in feelings of frustration and agitation, which may contribute to aggressive behavior.[9]

(+/-) Sexual Behavior. Decreased libido has been linked to serotonin dysfunction.[9] However, sexual dysfunction is also a common unwanted side effect of SSRIs.[12]

Physical Symptoms[edit]

*Many physical symptoms of serotonin dysregulation occur due to its role as a hormone, neuromodulator rather than as a neurotransmitter (see relevant hormone document for details).

(+/-) Heart Rate. Serotonin plays a role in the communication between the brain and the heart in those with panic disorder and in those on serotonin reuptake inhibitors. Changes in serotonin levels may therefore be associated with changes in heart rate.[11]

(+/-) Pain. Serotonin is known to regulate pain, which may occur in part due to interactions with other hormones.[16][23][24] Specifically, it may enhance pain sensation through its role as an inflammatory mediator.[25] Low central serotonin levels have been implicated in migraine headaches, and triptans, agonists of certain classes of serotonin receptors are the first-line of acute treatment for the disorder.

(+/-) Sleep. Serotonin interacts with the brain systems involved in sleep and waking.[26][27] Changes in serotonin levels can have differential effects on wakefulness and fatigue.

(-) Premenstrual syndrome. Serotonin is implicated in premenstrual syndrome (PMS), and serotonin reuptake inhibitors that increase serotonin levels have been shown to improve symptoms.[28][29]

(+/-) Body temperature. Serotonin helps to regulate body temperature, so changes in body temperature or body temperature regulation may occur with serotonin dysfunction.[13]

References[edit]

  1. 1.0 1.1 1.2 Jenkins, Trisha; Nguyen, Jason; Polglaze, Kate; Bertrand, Paul (2016). "Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis". Nutrients. 8 (1): 56. doi:10.3390/nu8010056. ISSN 2072-6643. PMC 4728667. PMID 26805875.CS1 maint: PMC format (link)
  2. Friedman, Mendel; Levin, Carol E. (2012). "Nutritional and medicinal aspects of d-amino acids". Amino Acids. 42 (5): 1553–1582. doi:10.1007/s00726-011-0915-1. ISSN 0939-4451.
  3. Herrera, Christopher P.; Smith, Keir; Atkinson, Fiona; Ruell, Patricia; Chow, Chin Moi; O'Connor, Helen; Brand-Miller, Jennie (2011). "High-glycaemic index and -glycaemic load meals increase the availability of tryptophan in healthy volunteers". British Journal of Nutrition. 105 (11): 1601–1606. doi:10.1017/S0007114510005192. ISSN 0007-1145.
  4. Cowen, Philip J.; Browning, Michael (2015). "What has serotonin to do with depression?". World Psychiatry. 14 (2): 158–160. doi:10.1002/wps.20229. PMC 4471964. PMID 26043325.CS1 maint: PMC format (link)
  5. 5.0 5.1 5.2 Young, Simon N. (2007). "How to increase serotonin in the human brain without drugs". Journal of Psychiatry & Neuroscience : JPN. 32 (6): 394–399. ISSN 1180-4882. PMC 2077351. PMID 18043762.
  6. 6.0 6.1 Blier, Pierre; El Mansari, Mostafa (2013). "Serotonin and beyond: therapeutics for major depression". Philosophical Transactions of the Royal Society B: Biological Sciences. 368 (1615): 20120536. doi:10.1098/rstb.2012.0536. ISSN 0962-8436. PMC 3638389. PMID 23440470.CS1 maint: PMC format (link)
  7. Albert, Paul R.; Benkelfat, Chawki (2013). "The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies". Philosophical Transactions of the Royal Society B: Biological Sciences. 368 (1615): 20120535. doi:10.1098/rstb.2012.0535. ISSN 0962-8436. PMC 3638388. PMID 23440469.CS1 maint: PMC format (link)
  8. Sansone, Fabrizio; Zingarelli, Edoardo; Ceresa, Fabrizio; Patanè, Francesco (2013). "Partial Aortic Root Remodeling in Case of Ascending Aortic Aneurysms". Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 8 (4): 1–5. doi:10.1177/155698451300800404. ISSN 1556-9845.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Briley, Mike; Moret, Chantal (2010). "Improvement of social adaptation in depression with serotonin and norepinephrine reuptake inhibitors". Neuropsychiatric Disease and Treatment: 647. doi:10.2147/NDT.S13171. ISSN 1176-6328. PMC 2951748. PMID 20957125.CS1 maint: PMC format (link)
  10. Maron, Eduard; Shlik, Jakov (2006). "Serotonin Function in Panic Disorder: Important, But Why?". Neuropsychopharmacology. 31 (1): 1–11. doi:10.1038/sj.npp.1300880. ISSN 0893-133X.
  11. 11.0 11.1 Mueller, Erik M; Panitz, Christian; Nestoriuc, Yvonne; Stemmler, Gerhard; Wacker, Jan (2014). "Panic Disorder and Serotonin Reuptake Inhibitors Predict Coupling of Cortical and Cardiac Activity". Neuropsychopharmacology. 39 (2): 507–514. doi:10.1038/npp.2013.224. ISSN 0893-133X. PMC 3870782. PMID 23985783.CS1 maint: PMC format (link)
  12. 12.0 12.1 12.2 Olivier, Berend (2015). "Serotonin: A never-ending story". European Journal of Pharmacology. 753: 2–18. doi:10.1016/j.ejphar.2014.10.031.
  13. 13.0 13.1 13.2 Kanova, Marcela; Kohout, Pavel (2021). "Serotonin—Its Synthesis and Roles in the Healthy and the Critically Ill". International Journal of Molecular Sciences. 22 (9): 4837. doi:10.3390/ijms22094837. ISSN 1422-0067. PMC PMC8124334 Check |pmc= value (help). PMID 34063611 Check |pmid= value (help).CS1 maint: PMC format (link)
  14. Amin, Zenab; Canli, Turhan; Epperson, C. Neill (2005). "Effect of Estrogen-Serotonin Interactions on Mood and Cognition". Behavioral and Cognitive Neuroscience Reviews. 4 (1): 43–58. doi:10.1177/1534582305277152. ISSN 1534-5823.
  15. Olvera-Cortés ME, Anguiano-Rodríguez P, López-Vázquez MÁ, Alfaro JMC. (2008) Serotonin/dopamine interaction in learning. Prog Brain Res. 172:567-602. https://doi.org/10.1016/S0079-6123(08)00927-8
  16. 16.0 16.1 Švob Štrac, Dubravka; Pivac, Nela; Mück-Šeler, Dorotea (2016). "The serotonergic system and cognitive function". Translational Neuroscience. 7 (1): 35–49. doi:10.1515/tnsci-2016-0007. ISSN 2081-6936. PMC 5017596. PMID 28123820.CS1 maint: PMC format (link)
  17. Sayyah, Mehdi; Eslami, Kaveh; AlaiShehni, Shabnam; Kouti, Leila (2016). "Cognitive Function before and during Treatment with Selective Serotonin Reuptake Inhibitors in Patients with Depression or Obsessive-Compulsive Disorder". Psychiatry Journal. 2016: 1–4. doi:10.1155/2016/5480391. ISSN 2314-4327. PMC 5002481. PMID 27597949.CS1 maint: PMC format (link)
  18. Schmitt, J.; Wingen, M.; Ramaekers, J.; Evers, E.; Riedel, W. (2006). "Serotonin and Human Cognitive Performance". Current Pharmaceutical Design. 12 (20): 2473–2486. doi:10.2174/138161206777698909.
  19. Cowen, Philip; Sherwood, Ann C (2013). "The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression". Journal of Psychopharmacology. 27 (7): 575–583. doi:10.1177/0269881113482531. ISSN 0269-8811.
  20. Rizvi, Sakina J.; Pizzagalli, Diego A.; Sproule, Beth A.; Kennedy, Sidney H. (2016). "Assessing anhedonia in depression: Potentials and pitfalls". Neuroscience & Biobehavioral Reviews. 65: 21–35. doi:10.1016/j.neubiorev.2016.03.004. PMC 4856554. PMID 26959336.CS1 maint: PMC format (link)
  21. Wurtman, Richard J.; Wurtman, Judith J. (1995). "Brain Serotonin, Carbohydrate-Craving, Obesity and Depression". Obesity Research. 3 (S4): 477S–480S. doi:10.1002/j.1550-8528.1995.tb00215.x.
  22. Siegel, Jenifer Z.; Crockett, Molly J. (2013). "How serotonin shapes moral judgment and behavior". Annals of the New York Academy of Sciences. 1299 (1): 42–51. doi:10.1111/nyas.12229. ISSN 0077-8923. PMC 3817523. PMID 25627116.CS1 maint: PMC format (link)
  23. Paredes, Stephania; Cantillo, Santiago; Candido, Kenneth D.; Knezevic, Nebojsa Nick (2019). "An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens". International Journal of Molecular Sciences. 20 (22): 5729. doi:10.3390/ijms20225729. ISSN 1422-0067. PMC 6888666. PMID 31731606.CS1 maint: PMC format (link)
  24. Sommer, Claudia (2004). "Serotonin in Pain and Analgesia: Actions in the Periphery". Molecular Neurobiology. 30 (2): 117–126. doi:10.1385/MN:30:2:117. ISSN 0893-7648.
  25. Wang, X.; Li, W.-G.; Yu, Y.; Xiao, X.; Cheng, J.; Zeng, W.-Z.; Peng, Z.; Xi Zhu, M.; Xu, T.-L. (2013). "Serotonin Facilitates Peripheral Pain Sensitivity in a Manner That Depends on the Nonproton Ligand Sensing Domain of ASIC3 Channel". Journal of Neuroscience. 33 (10): 4265–4279. doi:10.1523/JNEUROSCI.3376-12.2013. ISSN 0270-6474. PMC 6704965. PMID 23467344.CS1 maint: PMC format (link)
  26. Ursin, Reidun (2002). "Serotonin and sleep". Sleep Medicine Reviews. 6 (1): 55–67. doi:10.1053/smrv.2001.0174.
  27. Leu-Semenescu, Smaranda; Arnulf, Isabelle; Decaix, Caroline; Moussa, Fathi; Clot, Fabienne; Boniol, Camille; Touitou, Yvan; Levy, Richard; Vidailhet, Marie; Roze, Emmanuel (2010). "Sleep and Rhythm Consequences of a Genetically Induced Loss of Serotonin". Sleep. 33 (3): 307–314. doi:10.1093/sleep/33.3.307. ISSN 1550-9109. PMC 2831424. PMID 20337188.CS1 maint: PMC format (link)
  28. Yonkers, Kimberly Ann; O'Brien, PM Shaughn; Eriksson, Elias (2008). "Premenstrual syndrome". The Lancet. 371 (9619): 1200–1210. doi:10.1016/S0140-6736(08)60527-9. PMC 3118460. PMID 18395582.CS1 maint: PMC format (link)
  29. Marjoribanks, Jane; Brown, Julie; O'Brien, Patrick Michael Shaughn; Wyatt, Katrina (2013). Cochrane Gynaecology and Fertility Group (ed.). "Selective serotonin reuptake inhibitors for premenstrual syndrome". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD001396.pub3. PMC 7073417. PMID 23744611.CS1 maint: PMC format (link)